Adaptive Nonlinear Model Predictive Horizon Using Deep Reinforcement Learning for Optimal Trajectory Planning
نویسندگان
چکیده
This paper presents an adaptive trajectory planning approach for nonlinear dynamical systems based on deep reinforcement learning (DRL). methodology is applied to the authors’ recently published optimization-based named model predictive horizon (NMPH). The resulting design, which we call ‘adaptive NMPH’, generates optimal trajectories autonomous vehicle system’s states and its environment. done by tuning NMPH’s parameters online using two different actor-critic DRL-based algorithms, deterministic policy gradient (DDPG) soft (SAC). Both NMPH variants are trained evaluated aerial drone inside a high-fidelity simulation results demonstrate curves, sample complexity, stability of adaptation scheme show superior performance relative our earlier designs.
منابع مشابه
Adaptive Horizon Model Predictive Control
Adaptive Horizon Model Predictive Control (AHMPC) is a scheme for varying as needed the horizon length of Model Predictive Control (MPC). Its goal is to achieve stabilization with horizons as small as possible so that MPC can be used on faster or more complicated dynamic processes. Beside the standard requirements of MPC including a terminal cost that is a control Lyapunov function, AHMPC requi...
متن کاملAn Adaptive Learning Game for Autistic Children using Reinforcement Learning and Fuzzy Logic
This paper, presents an adapted serious game for rating social ability in children with autism spectrum disorder (ASD). The required measurements are obtained by challenges of the proposed serious game. The proposed serious game uses reinforcement learning concepts for being adaptive. It is based on fuzzy logic to evaluate the social ability level of the children with ASD. The game adapts itsel...
متن کاملModel-Free Trajectory Optimization for Reinforcement Learning
Many of the recent Trajectory Optimization algorithms alternate between local approximation of the dynamics and conservative policy update. However, linearly approximating the dynamics in order to derive the new policy can bias the update and prevent convergence to the optimal policy. In this article, we propose a new model-free algorithm that backpropagates a local quadratic time-dependent Q-F...
متن کاملTrajectory Planning for Unmanned Vehicles using Robust Receding Horizon Control
This thesis presents several trajectory optimization algorithms for a team of cooperating unmanned vehicles operating in an uncertain and dynamic environment. The first, designed for a single vehicle, is the Robust Safe But Knowledgeable (RSBK) algorithm, which combines several previously published approaches to recover the main advantages of each. This includes a sophisticated cost-to-go funct...
متن کاملControlling Nonlinear Processes, using Laguerre Functions Based Adaptive Model Predictive Control (AMPC) Algorithm
Laguerre function has many advantages such as good approximation capability for different systems, low computational complexity and the facility of on-line parameter identification. Therefore, it is widely adopted for complex industrial process control. In this work, Laguerre function based adaptive model predictive control algorithm (AMPC) was implemented to control continuous stirred tank rea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Drones
سال: 2022
ISSN: ['2504-446X']
DOI: https://doi.org/10.3390/drones6110323